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Abstract In this paper, we present a modified k-1 model capable of addressing turbulent weld-pool
convection in the presence of a continuously evolving phase-change interface during a gas tungsten
arc welding (GTAW) process. The phase change aspects of the present problem are addressed
using a modified enthalpy-porosity technique. The k-1 model is suitably modified to account for the
morphology of the solid-liquid interface. The two-dimensional mathematical model is subsequently
utilised to simulate a typical GTAW process with high power, where effects of turbulent transport
can actually be realised. Finally, we compare the results from turbulence modelling with the
corresponding results from a laminar model, keeping all processing parameters unaltered. The
above comparison enables us to analyse the effects of turbulent transport during the arc welding
process.
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Nomenclature
b ¼ a small number to avoid division by

zero
~B ¼ magnetic flux density
C ¼ a large number
Cm ¼ proportionality constant in the

formula of eddy viscosity
C11 ¼ modelling constant for production

term in 1 equation
C12 ¼ modelling constant for destruction

term in 1 equation
fl ¼ liquid fraction
fm ¼ damping parameter for turbulent

viscosity
gi ¼ Component of acceleration due to

gravity in the i’th direction
DH ¼ latent heat content of a control

volume
h ¼ convective heat transfer coefficient

I ¼ welding current
~J ¼ current density
k ¼ turbulent kinetic energy
K ¼ thermal conductivity
L ¼ latent heat of fusion
n ¼ normal direction
N ¼ Stuart Number
p ¼ pressure
Q ¼ arc power
q ¼ heat flux
Ret ¼ turbulent Reynolds number
rq ¼ radius of the heat source
rj ¼ radius of the current source
S ¼ source term
t ¼ time
T ¼ mean temperature
T 0 ¼ temperature fluctuation
U ¼ mean velocity in x-direction
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Introduction
Welding is probably the most common process of fusion joining, in which the
pieces to be joined together are locally melted by an intense energy source (such
as an electric arc, laser, or plasma torch), followed by a solidification phase. The
mechanical strength and microstructure of such joints are strongly dependent
on the thermal histories in the fusion zone and the nearby-unmelted region
during the processes. Further, fluid flow in the molten metal is known to have a
considerable effect on these thermal histories and solidification processes.
Therefore, in order to predict the thermal behaviour of the joint accurately, it is
very much important to have a thorough knowledge of the mechanism of
transport inside the weld-pool, which leads to a final resolidified
microstructure. While empirical knowledge and experience have been
historically employed for determining processing parameters for manual
welding operations, the emerging trend of process automation has resulted in
considerable scientific efforts towards optimisation of process variables for
such applications.

Oreper and Szekely (1984) have first reported a detailed numerical study of
weld-pool flow and thermal transport during a gas tungsten arc welding
(GTAW) process. Correa and Sundell (1986) have subsequently used a modified
procedure for calculation of the Lorentz force. Kanouff and Grief (1992) have
used moving grids to track the phase change boundary during an arc welding
process, using an evaporation model at the free surface of the weld-pool.
Recognising the effects of three-dimensionality in weld-pool convection, Dutta
et al. (1995) have developed a three-dimensional model for a GTAW process
with non-axisymmetric boundary conditions. It can be noted here that all the
earlier mentioned studies have typically employed laminar flow models, in
order to investigate weld-pool convection mathematically. However, it can, by

U* ¼ mean velocity in x0 direction
Ui ¼ mean velocity in i-th direction
u0 ¼ velocity fluctuation in x-direction
ui

0 ¼ velocity fluctuation in i-th direction
V ¼ mean velocity in y-direction
v0 ¼ velocity fluctuation in y-direction
x + ¼ reduced distance normal to the wall
xi ¼ co-ordinate direction in i-th direction
x*, y ¼ co-ordinate directions in stationary

reference frame
x, y ¼ co-ordinate directions in a moving

reference time

Greek symbols
a ¼ thermal diffusivity
at ¼ eddy thermal diffusivity
b ¼ coefficient of volumetric expansion
1 ¼ dissipation rate of kinetic energy
1r ¼ emissivity

f ¼ general dependent variable
m ¼ dynamic viscosity
mt ¼ turbulent viscosity
s ¼ Prandtl number
selec ¼ electrical conductivity
sk ¼ turbulent kinetic energy Prandtl

number
ss ¼ turbulent dissipation rate of kinetic

energy Prandtl number
ssur ¼ surface tension coefficient
srad ¼ Stefan-Boltzmann constant
r ¼ density

Subscripts
b ¼ black body
l ¼ laminar
max ¼ maximum
t ¼ turbulent
1 ¼ ambient
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no means, be precluded that the weld-pool transport would be laminar in
nature. Theoretically, the nature of the transport in weld-pool (i.e. whether
laminar or turbulent) can be predicted by a stability analysis, but complexities
of geometry and flow impose practical restrictions towards achieving that goal.
It has been observed that in case of surface tension-driven flows, the flow
becomes turbulent if the surface tension Reynolds number is greater than 100
(Aboutalebi et al., 1995). It can be shown that typically for the high power TIG
welding, the surface tension Reynolds number is much greater than 100.
Accordingly, in most welding situations where the power input is high, the
weld-pool convection can be turbulent. Experimentally it has been observed by
Joshi et al. (1997) that under high current conditions, there can be perceptible
surface oscillations in the pool. Moreover, the resultant pool is shallower in
practice than that predicted by familiar laminar fluid flow models. Such
oscillations could be due to surface instabilities, which might eventually lead to
turbulence. The above is also in accordance with an earlier work reported by
Atthey (1980), where the author mentioned the possibility of onset of
turbulence in weld-pools under conditions of high arc current. Hence, it is
important to investigate the effects of turbulence during fusion welding
processes.

Turbulence modelling in the context of materials processing, in general, is a
relatively recent practice (Aboutalebi et al., 1995; Shyy et al., 1992). Most of the
researchers in this field have preferred k-1 model for its well-known advantages
over other available models. In order to account for turbulent transport
phenomenon in welding applications, Mundra et al. (1992) have examined the
effect of varying the fluid viscosity in their mathematical model of laser
welding. However, enhancement of thermal diffusivity due to turbulence was
not taken into account in their model.

Additionally, the variation of viscosity in the earlier investigation was
treated rather intuitively. More recently, Chao and Szekely (1994) have
modelled the effects of turbulence in stationary GTAW weld-pools using k-1
models. However, the treatment of solid-liquid interface with regard to the
implementation of wall conditions was not elaborately addressed in their work.
Recently, Hong et al. (1995) have developed a finite element based model to
study the effect of turbulence by taking variable surface tension coefficient,
which can vary with temperature and composition of surface active elements. It
can be noted here that in none of the earlier investigations, the mathematical
details of k-1 modelling, as modified for welding applications, have been
adequately discussed. Also, effects of phase change and dynamic evolution of
the resultant solid-liquid interfaces have not been incorporated in the models.
From the earlier mentioned studies, it is clear that there is a need to develop a
detailed formulation for turbulence modelling in the context of arc weld-pool
convection.
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The aim of the present work is to develop a modified k-1 model capable of
addressing turbulent weld-pool convection in the presence of a continuously
evolving phase-change interface during a GTAW process. In order to take into
account the phase change aspects of the present problem, a modified enthalpy-
porosity technique is used. The source terms of both k and 1 equations are so
devised that a smooth transition from a completely solid state to a fully liquid
state can be achieved by the same set of equations. Dynamic conditions at the
interface are inherently tackled by resorting to a moving coordinate system and
prescribing appropriate wall conditions at solid-boundary locations that evolve
continuously with time. It may be noted here that the present study is only
aimed towards the development of a turbulence model for application in weld-
pool convection. For the sake of simplicity in implementation, we have used a
two-dimensional model and discussed some issues pertaining to turbulent
weld-pool convection in a qualitative sense only. It is expected that most of the
trends observed in the two-dimensional model would still be valid in realistic
three-dimensional situations. The two-dimensional mathematical model is
subsequently utilised to simulate a typical GTAW process with high power,
where effects of turbulent transport can actually be realised. Finally, we
compare the results from turbulence modelling with the corresponding results
from a laminar model, keeping all processing parameters unaltered. The earlier
comparison enables us to analyse the effects of turbulent transport during the
welding process.

Mathematical formulation
Governing equations for heat and fluid flow
In the GTAW welding process, the arc is maintained between a non-
consumable tungsten electrode and the work-piece in a protective inert gas
atmosphere. Figure 1 shows a schematic diagram of the process. As shown in

Figure 1.
A schematic diagram of
the model problem
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Figure 1, the electrode is moving with a constant speed (Uscan) in the negative x
direction. The arc heat is responsible for heating the work-piece. Only a part of
energy of arc heat actually heats the surface of the work-piece, and that heat is
transported by diffusion and convection mechanism to other parts of the work-
piece that eventually leads to the formation of a molten pool. We assume the
input energy to the work-piece is in the form of a Gaussian heat source. A
considerable amount of energy is lost from the work-piece to the surroundings
due to convective and radiative heat transfer. The actual power that goes to the
work-piece is specified by arc efficiency, h. The following relation relates the
available heat to power input:

q ¼ hQ ¼ hVI ð1Þ

where V and I are specified arc voltage and arc current, respectively. As the
work-piece melts, the absorbed energy induces a predominantly surface
tension-driven flow at the top surface, which redistributes the fluid momentum
as well as the thermal energy, turbulent kinetic energy, and dissipation of
turbulent kinetic energy inside the molten pool. The electromagnetic (Lorentz)
force and buoyancy forces also comes into play, but in most cases their
strengths are about an order of magnitude lower than surface tension
(Marangoni) forces (Chakraborty et al., 2001). It can be noted that in case of
turbulent flow, both convection and diffusion mechanisms may be of
importance and relative strength of these two mechanisms ultimately
determines the shape and size of the molten pool.

The following assumptions are made in modelling the present problem.

(1) The dependence of surface tension with temperature is assumed to be
linear.

(2) The top surface of the melt pool is assumed to be flat.

(3) The eddy viscosity is calculated using a two-equation k-1 turbulence
model.

(4) The flow of molten metal is Newtonian and incompressible.

(5) For simplicity, the welding process is assumed to be two-dimensional,
with the Gaussian arc heat input having a unit depth perpendicular to
the plane of the paper. It may be noted here that the aim of the present
work is to establish a turbulent weld-pool model and highlight the
fundamental difference between a laminar and turbulent weld-pool
behaviour. Since, in this study, we are not specifically looking for
numerical accuracy of prediction by comparing with experimental
moving arc weld-pools (which are inherently three-dimensional in
nature), a two-dimensional model can be more conveniently used to
satisfy our primary objective.
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The generalised governing transport equation in the weld-pool and its
surroundings in a stationary coordinate system (x*,y) can be written as:

›ðrfÞ

›t
þ

›ðrU*fÞ

›x*
þ

›ðrVfÞ

›y
¼

›

›x*
G
›f

›x*

� �
þ

›

›y
G
›f

›y

� �
þ S ð2Þ

where f is any dependent scalar variable, G is a generalised diffusion
coefficient, and S is a source term. However, the transport phenomenon
occurring inside the weld-pool can be conveniently studied with respect to a
coordinate system that translates with the arc heat source. Accordingly, we
introduce the following coordinate transformation:

x ¼ x* 2 U scant ð3Þ

where Uscan, is the speed of welding torch and x,y are coordinates in a frame
moving with the torch. Henceforth, we will follow the following tensorial
notation for description of conservation equation:

x1 ¼ x

x2 ¼ y
ð4Þ

Carrying out the transformation described in equation (3) and noting that the
scanning is done in negative x* direction, we obtain:

›ðrfÞ

›t
þ

›ðrUjfÞ

›xj

¼
›

›xj

G
›f

›xj

� �
þ S 2

›ðrU scanfÞ

›x1
ð4aÞ

Substituting f by appropriate transport variables, the governing equations in
the moving coordinate system assume the following forms:

Conservation of mass (continuity equation). The single-phase continuity
equation for an incompressible fluid is given by:

›Ui

›xi

¼ 0;
›u0

i

›xi

¼ 0 ð5Þ

where the superscript (‘/’) represents the fluctuating component of a scalar
variable.

Conservation of linear momentum. The equivalent single-phase linear
momentum conservation equation for the ith direction is given by i ¼ 1; 2 :

›ðrUiÞ

›t
þ rUj

›Ui

›xj

¼ 2
›p

›xi

þ ð ~J £ ~BÞi þ
›

›xj

m
›Ui

›xj

� �
2

›
�
ru0

iu
0
j

�
›xj

2 rU scan
›Ui

›x1
þ rgibðT 2 TrefÞ þ Si ð6Þ
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where gi is the component of acceleration due to gravity in the ith direction,
and Tref is taken to be equal to the melting temperature, Tm. The source term
Si in equation (6) originates from the consideration that the morphology of
the phase change domain can be treated as an equivalent porous medium
that offers a frictional resistance towards fluid flow in that region. In a single-
domain fixed-grid enthalpy-porosity formulation, this resistance can be
conveniently formulated using Darcy’s model in conjunction with the
Cozeny-Karman relationship (Brent et al., 1988). In equation (6), Si is given as:

Si ¼ 2
Cð1 2 f 2

1Þ

f 3
1 þ b

Ui ð6aÞ

where f 1 ¼ DH=L; with DH being the latent enthalpy content of a control
volume and L being the latent heat of fusion. In equation (6a), C is a large
number (,108) and b is a small number (,10230) to avoid division by zero.
The earlier formulation effectively ensures that the velocity undergoes a
smooth transition from a zero value in solid region to a finite value in the fully
liquid region. The details of formulation of the earlier term can be found in
Brent et al. (1988). The term 2›=›xjðru0

iu
0
jÞ is called Reynolds stress term, the

modelling of which is detailed subsequently. The Lorentz force term ~J £ ~B is
evaluated by solving Maxwell’s equations. The mathematical formulation and
numerical procedure for the solution of Maxwell’s equations are detailed by
Dutta et al. (1995).

Conservation of energy. The single-phase energy equation for turbulent flow
is given by:

›ðrTÞ

›t
þ

›ðrUiTÞ

›xi

¼
›

›xi

K

c

›T

›xi

� �
2

1

c

›ðrDH Þ

›t
2

›

›xi

r

c
UiDH

� �

2
1

c

›ðru0
iT

0Þ

›xi

2 rU scan
›T

›xi

ð7Þ

where c is the specific heat of the material, K is the thermal conductivity, and
DH is the latent enthalpy content of the computational cell under consideration.
In the present study, we assume the material to behave as a pure metal, and
hence the phase change is isothermal. For such a case,

DH ¼
L T . Tm

0 T # Tm

8<
: ð8Þ
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Modelling of Reynolds stress terms (2ru0
iu

0
j )

In the present analysis, we model the Reynolds stress terms appearing in
equation (6) by assuming a turbulent viscosity of the form:

2ru0
iu

0
j ¼ mt

›Ui

›xj

þ
›Uj

›xi

� �
2

2

3
dijk ð9Þ

where

mt ¼ f mCmrk2=1 ð9aÞ

In equation (9a), Cm is a constant, whose value has been experimentally
determined from shear flow experiments. It is reported that Cm varies from 0.08
to 0.09 (Komatsu and Matsunaga, 1986). The term fm in equation (9a) is a
damping function, which damps the effect of, mt as the solid wall is approached.
In reality, fm, is a very important parameter because it acts as a parameter of
proportionality in the computation of, mt in k-1 model. In a standard k-1 model,
fm is taken as a constant, equal to 1.0. However, in the present problem, the
whole domain is not composed of a single phase. Accordingly, the formulation
should ensure an asymptotic reduction of eddy viscosity and thermal
conductivity to their respective molecular values along the solid-liquid
interface, and merge with single-phase turbulent flow conditions in the fully
liquid region. To satisfy the earlier requirement, the following correlation
between fm and fl can be used (Shyy et al., 1992).

f m ¼ exp
23:4

1 þ Ret

50


 �2

0
@

1
A ffiffiffiffi

f l

p
ð10Þ

where

Ret ¼
rk2

1m
¼ Turbulent Reynolds number ð10aÞ

Modelling of turbulent heat fluxes (2ru0
iH

0 )
Following the same analogy as the Reynolds stresses, the turbulent heat fluxes
(Reynolds heat fluxes) appearing in equation (7) can be written as:

2
u0

jH
0

c
¼ 2u0

jT
0 ¼ at

›T

›xj

ð11Þ

where at is the eddy thermal diffusivity. From the analogy of laminar flow, at

can be expressed as:
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at ¼
mt

rst
ð11aÞ

where st is turbulent Prandtl number. It has been proposed that st varies from
0.8 to 0.9.

In the present work, we take st ¼ 0:9
Governing equations for k and 1. The governing equations for k and 1 in the

present context can be written as:

›ðrkÞ

›t
þ Uj

›k

›xj

¼
›

›xj

mþ
mt

sk

� �
›k

›xj

� �
þ mt

›Ui

›xj

þ
›Uj

›xi

� �
›Ui

›xj

2
mt

st
gb

›T

›x2
2 r12 rU scan

›k

›x1
ð12Þ

›ðr1Þ

›t
þ Uj

›ðr1Þ

›xj

¼
›

›xj

mþ
mt

se

� �
›1

›xj

� �
þ C11mt

›Ui

›xj

þ
›Uj

›xi

� �
›Ui

›xj

1

k

2 C11
mt

st
gb

›T

›x2

1

k
2 C12

r12

k
2 rU scan

›1

›x1
ð13Þ

where

Cm ¼ 0:09; C11 ¼ 1:44; and C12 ¼ 1:92

sk ¼ 1:0; s1 ¼ 1:3

Boundary conditions
The boundary conditions for the flow variables with reference to the work piece
can be stated as follows:

Top surface. Considering Gaussian heat input, convective and radiation loss,
we write the following boundary condition:

2K
›T

›y
¼ 2q00ðrÞ þ hðT 2 T1Þ þ 1rsradðT

4
2 T4

1Þ ð14Þ

where q00(r) is the net arc heat flux distributed in a Gaussian manner with
a radius of rq,1r is the Emissivity of the top surface and srad is the
Stefan-Boltzmann constant. From the flat surface condition at the top, we get:

V ¼ 0 ð15Þ

From the free surface shear balance between viscous force and surface tension:
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m
›U

›y
¼

›ssur

›T

›T

›x
ð16Þ

where ssur is the surface tension.
Regarding the transport of k and 1, we assume that the top surface acts like a

rigid lid (Aboutalebi et al., 1995) and write:

›k

›y
¼ 0 ð17Þ

›1

›y
¼ 0 ð18Þ

Side faces. The four side faces are subjected to convective heat transfer
boundary condition:

2K
›T

›n

� �
wall

¼ hðT 2 T1Þ ð19Þ

where n is the direction of outward normal to the surface concerned.
Bottom face. The face being insulated, the temperature boundary

condition is:

›T

›y

� �
bottom

¼ 0 ð20Þ

Solid/liquid interface. It is apparent that the solid/liquid interface in this
problem acts as a wall, and the same needs to be treated appropriately.
However, according to the enthalpy-porosity formulation, we need not track the
interface separately and impose velocity or temperature boundary conditions
on the same, since the interface comes out as a natural outcome of the solution
procedure itself. However, the evolving interface locations are important inputs
for k and 1 equations, since the values of k and 1 are to be specified for near wall
points with the help of suitable wall functions, which leads to satisfaction of the
following conditions at the solid/liquid interface:

k ¼ 0 ð21Þ

›1

›n
¼ 0 ð22Þ
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Numerical procedure
With an assumption that the electric current flowing through the work-piece is
steady and there is no coupling between fluid flow and electric current, the
governing equations for electromagnetic force field are solved numerically,
a priori, to calculate the Lorentz force field. The solution procedure for
obtaining the Lorentz force field (i.e. ~J £ ~B) is outlined in detail by Dutta et al.
(1995), and is not repeated here for the sake of brevity. The calculated Lorentz
force field is subsequently used as body force distribution in the momentum
equations. The coupled continuity, momentum, energy, k and 1 equations are
solved simultaneously using a pressure-based semi-implicit finite volume
technique according to the SIMPLER algorithm (Patankar, 1980). We have used
the power law scheme (Patankar, 1980) for differencing the convective terms. In
the numerical solution of the energy equation, the latent heat content of each
control volume is updated using the temperature field predicted from the
energy equation, as outlined by Brent et al. (1988). In a physical sense, the
updating of the latent heat term attempts to neutralise the difference in
temperature as obtained from the energy equation and that dictated by phase
change consideration, in order to obtain a physically realistic converged
solution.

The turbulence aspects of the present numerical code are first validated
against a previous work done by Chang (1984) for recirculating turbulent flow
in a two-dimensional symmetric step channel. The results (not shown here) are
compared with results from the earlier study, and they match well. The phase
change aspects of the present code are tested against numerical results reported
by Brent et al. (1988), corresponding to the melting of pure Gallium in a
rectangular cavity, and an excellent agreement is obtained.

Results and discussion
Numerical simulations are performed for the case of a GTAW situation with
steel as the base material. The thermophysical properties and processing
parameters for the problem are listed in Table I. The size of the computational
domain is taken as 45 £ 15 mm for the solution of heat and fluid flow equations.

Choice of grid-size
In order to capture the top surface velocity originating from surface tension
gradients, the choice of grid-size should be judicious. This also ensures
indirectly that the calculations for velocity gradients are accurate enough, so
that the turbulent source terms can be properly evaluated. Accordingly, we
adopt the following criteria for the choice of grid-size for the present simulation.

Criterion-1. At the top surface of the pool, surface tension forces are caused
by steep temperature gradients as per equation (16). In order to obtain an
estimate of the viscous boundary layer thickness (dv) at the top that is caused
by the resultant surface tension driven flow, an appropriate scaling analysis is
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performed with respect to the stationary molten pool for the laminar case.
Following a procedure outlined by Dutta et al. (1995), and using the typical
thermophysical parameters for the model problem solved in this study, we
obtain the velocity boundary layer thickness of the order of 1025 m.
Accordingly, in order to capture sufficient flow details inside the surface
tension driven boundary layer, at least a few (typically five) grid points are
accommodated inside it.

Criterion-2. In order to specify the diffusion coefficients near the wall, it is
necessary to control the grid-size in its vicinity. Otherwise it may so happen
that the grid points immediately next to the wall may fall beyond the “near
wall” regime. However, if the diffusion coefficients are still evaluated by log-
law, the simulation may lead to an underestimation of diffusion coefficient and
one can end up with unrealistic results eventually. Hence, it is necessary to
have a grid distribution such that the grid next to the wall always falls within
the buffer layer. This condition is mathematically given by:

xþ # 30 ð23Þ

where

xþ ¼
rk0:5x

m
ð23aÞ

One can satisfy the earlier requirement by ensuring that x + remains within 30,
even for the maximum possible value of k. However, it unnecessary calls for
very fine grid that can increase the computational costs considerably, since, in
practice, the value of k is typically low near the walls. The appropriate grid-
size, which can meet the earlier requirement, is best found by trial and error
method using limiting values of k.

Physical property Value

Volumetric expansion coefficient (b) 0.00001 K21

Melting temperature (Tm) 1,5008C
Latent heat of fusion (L) 247,196 J/kg
Density (r) 7,800 kg/m3

Thermal conductivity (K) 35 W/mK
Specific heat (c) 753 J/kg
Molecular viscosity (m) 0.006 Pa s
Surface tension coefficient (s) 0.0005 N/m K

Problem data Value
Arc voltage (V ) 12 V
Arc current (I ) 150 Amp
Arc efficiency (h) 90%
Scanning speed (uscan) 7.62 mm/s

Table I.
Table of physical
properties and
problem data
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From the two requirements discussed earlier it is evident that the grid
spacing in y direction is governed by criterion 1, and that in the x-direction is
determined by criterion 2. Accordingly, we choose a depth of 2:7 £ 1027 m for
the topmost grids. Just below this, the grid depth is taken as 1:35 £ 1026 m;
followed by a depth of 3:5 £ 1025 m: Thereafter a uniform grid depth of
1 £ 1024 m is employed for most of the remaining part of the pool. The grid
spacing is made coarser in y-direction gradually. Outside the molten pool, a
non-uniform coarser grid is chosen. In the x-direction, an optimised grid size
near the wall is found to be 5 £ 1024 m; after which the grid-size is increased
gradually as we move away from the wall. It is found that a finer grid system is
not found to alter the results appreciably. Overall, a ð40 £ 36Þ grid system is
used to discretise the working domain ð45 £ 15 cmÞ:

Choice of time step
For the model system studied in the present investigation, initiation of melting
takes about 0.25 s. Before melting, there is a conduction-dominated regime,
during which a large time step (of about 0.05 s) is chosen for computational
economy. However, once melting starts, the high temperature gradient in the
pool sets up a strong Marangoni convection. Since, in this time span, the
velocity in the molten pool develops quickly, the solution is sensitive to the time
step chosen. It is observed that a time step of about 0.002 s lead towards
monotonic convergence during this period of initial transience.

Typically, after about 1.5 s, the molten pool reaches a nearly quasi-steady
state, when changes in dependent variables between the consecutive time steps
are very small. At this stage, slightly higher time steps (typically about 0.005 s)
can safely be used to save computational time. After about 2.0 s, when the pool
is sufficiently developed, time steps as high as 0.01 s can be implemented.
Finally, the computation is carried out upto 3 s to ensure that quasi-steady state
has actually been reached. In this period, the maximum relative variations in
the values of dependent variables between two consecutive time steps are
found to be less than 1025.

Convergence criteria
Convergence of the dependent variables is checked by method of relative error.
Within a particular time step, all the independent variable ðU ;V ;T; k; 1Þ
values are checked after each iteration. Convergence is declared if the following
condition is satisfied at each grid point:

f2 fold

fmax

����
���� # 1024 ð24Þ

where f is the value of the general variable at a particular grid point at current
iteration level, fold is the value of the general variable at the same grid point at
the previous iteration level, fmax is the maximum absolute value of the same
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over the entire domain. It can be noted that numerical simulation of unsteady
two-dimensional equations with k-1 modelling is found to be almost 1.5 times
CPU expensive than that without turbulence modelling. Each run with k-1
takes about 12 h of CPU time in a Pentium III desktop computer having 128 MB
SD RAM and 700 MHz processing speed.

Results of the case study
The temperature field. The temperature distribution for the case study on
GTAW is given in Figure 2. From Figure 2, certain important observations can
be made regarding the difference in the results between a turbulent simulation
and the corresponding laminar simulation. It can be seen from the figure that
the asymmetry in the longitudinal section of the weld-pool is more prominent in
the laminar case than that in the corresponding turbulent simulation. The
above phenomenon can be attributed to the fact that in case of turbulent flow,
the diffusion strength is considerably higher than that of the laminar flow, as
discussed earlier. Since diffusion is a non-directional phenomenon, the effects of
asymmetry imposed by the scanning effect are partially masked by the

Figure 2.
Temperature contours
inside the work-piece
corresponding to a
current of 150 A,
voltage of 12 V, scanning
speed of 7.62 mm/s; (a)
results of laminar model
simulation and (b) results
of turbulent simulation.
All dimensions are in
metres. All temperatures
are in 8C. The electrode is
centred at x ¼ 0:0225 m

HFF
13,1

20



enhanced diffusion effects, so that the maximum temperature location in case
of a turbulent simulation is more towards the centre of the work-piece.
Moreover, in the case of laminar simulation, the isotherms are much more
crowded towards the direction of scanning near the leading edge of the pool
than in the corresponding turbulent case. It can also be noted that the maximum
temperature obtained in the laminar case is higher than the maximum mean
temperature obtained in the turbulent case, which can be attributed to the high
effective thermal diffusivity of turbulent flow, originating from its dispersive
nature. It is observed that the high temperature zones have more penetration in
laminar simulation than that in the turbulent one.

The velocity field. The velocity vector plot of the laminar simulation and that
of the corresponding turbulent simulation for the case study are given in
Figure 3. In both cases, the Marangoni flow on the pool surface is radially
inward in the direction of maximum surface temperature. The radially inward
flow is the result of a positive surface tension coefficient, caused by the
presence of surface active elements (such as sulphur and manganese) in steel.
From Figure 3, two counter-rotating circulations are observed, both for laminar
and turbulent simulations. One small circulation is formed near the melting
front of the pool, and another circulation of a larger size covers the rest of the
pool. The bigger circulation, which extends up to the trailing edge of the pool, is
relatively smaller in size for turbulent flow, as compared to laminar flow. The
phenomenon can be explained as follows. In the case of turbulent transport in

Figure 3.
Velocity vector plots

inside the molten pool
corresponding to the

process parameters as in
Figure 2; (a) results of

laminar model
simulation and (b) results

of turbulent simulation.
All dimensions are in

metres. The electrode is
centred at x ¼ 0:0225 m
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the weld-pool, the maximum mean temperature is much lower than the
maximum temperature obtained from the laminar solution, as mentioned
earlier. Due to lower temperature gradient in the turbulent pool, the Marangoni
convection on the pool surface is weaker than the corresponding laminar case.
In this situation, a weak fluid stream coming from the trailing edge of the
turbulent pool does not have enough momentum to overcome the flow
resistance caused by dynamic pressure of the flow approaching from the
melting front. Moreover, the horizontal component of Lorentz force also
opposes the flow once it crosses the centre of the work-piece. Hence, the surface
flow coming from the trailing edge easily loses its inertia and takes an early
turn in the downward direction. This causes the difference in sizes of the
vortices for laminar and turbulent situations.

From the earlier explanations, it is also apparent that the effects of Lorentz
force on overall pool dynamics appear to be more significant for the turbulent
case. To analyse the situation, the distribution of Lorentz force vectors is
shown in Figure 4. The force is seen to be symmetrical about the centre of the
work-piece. Moreover, for the bigger circulation in the weld-pool, it aids the
surface velocity as long as fluid particles are on the right side of middle plane
(torch centre). However, once the middle plane is crossed, the horizontal
component of Lorentz force vectors tries to oppose the Marangoni flow.
Quantitatively, the order of magnitude of the ratio of the electromagnetic force
and the inertia force is characterised by the Stuart number (also known as the
interaction parameter), given by:

N ¼
selec B2

0L

rU
ð25Þ

where U and L are characteristic velocity and length scales, respectively, B0 is
the magnetic flux density, and selec is the electrical conductivity. For the case
presented in this study, we get:

Figure 4.
Vector plot of Lorentz
force vector is shown,
corresponding to the
process parameters as in
Figure 2
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Nt

Nl
¼ 5:8337 ð26Þ

where subscripts t and l are used for turbulent and laminar cases, respectively.
From equation (26), it is evident the effect of Lorentz force is of a greater

importance in turbulent flow than in the case of a laminar flow.
The weld-pool penetration. The penetration effects in the weld-pool can also

be explained in terms of the transport process occurring inside the pool. In case
of positive surface tension coefficient (as in the present case), the two fluid
streams (one coming from the side of melting front and the other coming from
the trailing edge of the weld-pool) turn in the downward direction at the
maximum temperature-location on the top surface, thereby carrying thermal
energy from the hottest region of the pool to the cooler regions located further
down. The downward moving fluid has less momentum in the turbulent pool
than in laminar pool. This tends to cause a decrease in turbulent weld-pool
depth. On the other hand, the enhanced thermal diffusion tries to increase the
penetration of the turbulent pool. These two opposing effects will finally
determine the weld-pool depth. The resultant pool depth will depend on several
factors such as welding power, surface tension coefficient, scanning speed etc.
Hence, it is difficult to conclude, in general, whether a turbulent weld-pool will
be deeper than the laminar one, or vice-versa.

Distributions of k, 1 and mt. The turbulent kinetic energy distribution is
shown in Figure 5(a). It can be observed that turbulent kinetic energy becomes
a maximum in the vicinity of the top surface of the weld-pool, near the melting
front. As the solid from is approached, the magnitude of turbulent kinetic
energy decreases. The distribution of dissipation rate of turbulent kinetic
energy is shown in Figure 4(b). It can be seen that in the regions where
turbulent kinetic energy values are high, the dissipation rates are also high.
Also, the maximum rate of dissipation takes place adjacent to the top of the
molten pool. Additionally, the location of maximum rate of dissipation is closer
to the melting front of the weld-pool. The distribution of mt inside the weld-pool
is shown in Figure 4(c). It is observed that the value of mt decreases as the wall
is approached. The highest mt is found adjacent to the top surface of the molten
pool.

The variation of the earlier turbulent quantities can be explained from
Figures 6-9, in which the variations of temperature, velocity, eddy viscosity,
turbulent kinetic energy and dissipation rates, with respect to depth as well as
along the top surface, are plotted. Figures 6(a) and (b) suggest that the
difference between the temperatures predicted by laminar and turbulent
simulation is maximum at the top surface of the pool, indicating that the effect
of turbulence is there. The dominance of turbulent effect at the free surface is
physically meaningful since the top surface is unbounded and the effects of
turbulence can manifest themselves in an unrestrained manner at those
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locations. This is confirmed from the high values of turbulent kinetic energy at
the top surface, which are revealed in Figures 8(a) and 9(a). It can be noted that
during the quasi-steady state, in order to maintain local equilibrium, the
dissipation rate also should assume a high value, when the turbulent kinetic
energy becomes high. Such effects can be seen from Figures 8(b) and 9(b).
However, the increase in dissipation rate is not substantial enough to outweigh
the effects of enhanced turbulent kinetic energy, which ultimately dictates the
net energy exchange between turbulent eddies and the mean flow.
Mathematically, the eddy viscosity is a stronger function of turbulent kinetic
energy than of the dissipation rate, since it varies with second power of
turbulent kinetic energy. Such effects are apparent in Figure 7(b), in which the
maximum eddy viscosity at the top surface is attained near the location where

Figure 5.
Distribution of turbulent
quantities in the weld-
pool, corresponding to
process parameter as in
Figure 2; (a) turbulent
kinetic energy (m2/s2),
(b) rate of dissipation of
turbulent kinetic energy
(m2/s3) and
(c) distribution of
turbulent viscosity (Pa s)
in the molten pool. All
dimensions are in metres.
The electrode is centred
at x ¼ 0:0225 m
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Figure 6.
Comparison of

temperature variations
between laminar and

turbulent models;
(a) temperature variation
from the bottom to top of
the pool at x ¼ 0:0252 m

and (b) temperature
variation at the top

surface of the pool along
x-direction. The process
parameters correspond

to those in Figure 2

Modelling of
turbulent
transport

25



Figure 7.
Variation of flow
quantities on the top
surface along x-direction;
(a) variation of top
surface velocity along
x-direction and
(b) variation of turbulent
viscosity at the top
surface along x-direction.
The process parameters
correspond to those in
Figure 2
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Figure 8.
Variation of turbulent

quantities; (a) variation
of turbulent kinetic

energy at the top surface
of the pool along

x-direction and
(b) variation of rate of

dissipation of turbulent
kinetic energy at the top
surface of the pool along
x-direction. The process
parameters correspond

to those in Figure 2
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Figure 9.
Variation of turbulence
quantities; (a) variation
of turbulent kinetic
energy from the bottom
to top of the pool and
(b) variation of rate of
dissipation of turbulent
kinetic energy from the
bottom to top of the pool
at x ¼ 0:0225 m: The
process parameters
correspond to those in
Figure 2
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turbulent kinetic energy attains its maximum value. This high eddy viscosity
is responsible for greater degree of diffusion near the top surface of the pool.
In fact, the enhanced effects of diffusion during turbulent transport can be
easily verified by evaluating the ratio of Peclet number in turbulent transport
to that in the laminar transport, which comes out to be about 0.4 in the present
case. The earlier ratio indicates that during turbulent transport mechanism in
the weld-pool, diffusion is of a greater significance than in the case of laminar
transport.

Conclusion
In the present study, a two-dimensional k-1 model is developed for modelling
turbulent transport in arc welding applications. From the numerical results, it
is evident that turbulent transport phenomena have a marked effect on heat
and fluid flow in the weld-pool, resulting in situations strikingly different from
the corresponding laminar flow cases. However, the present study is only
aimed towards the development of a turbulence model followed by a
fundamental investigation revealing some of the important physical issues
pertaining to turbulent transport in weld-pools. It is understood that one
requires a three-dimensional simulation in order to capture the actual shape of
a moving weld-pool. In this regard, we aim to extend the present model to more
realistic situations of three-dimensional transport in one of our future
investigations.
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